Lemma 10.97.3. Let $(R, \mathfrak m)$ be a Noetherian local ring. Let $I \subset \mathfrak m$ be an ideal. Denote $R^\wedge $ the completion of $R$ with respect to $I$. The ring map $R \to R^\wedge $ is faithfully flat. In particular the completion with respect to $\mathfrak m$, namely $\mathop{\mathrm{lim}}\nolimits _ n R/\mathfrak m^ n$ is faithfully flat.

**Proof.**
By Lemma 10.97.2 it is flat. The composition $R \to R^\wedge \to R/\mathfrak m$ where the last map is the projection map $R^\wedge \to R/I$ combined with $R/I \to R/\mathfrak m$ shows that $\mathfrak m$ is in the image of $\mathop{\mathrm{Spec}}(R^\wedge ) \to \mathop{\mathrm{Spec}}(R)$. Hence the map is faithfully flat by Lemma 10.39.15.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: