The Stacks project

Lemma 10.99.1. Suppose that $R \to S$ is a local homomorphism of Noetherian local rings. Denote $\mathfrak m$ the maximal ideal of $R$. Let $M$ be a flat $R$-module and $N$ a finite $S$-module. Let $u : N \to M$ be a map of $R$-modules. If $\overline{u} : N/\mathfrak m N \to M/\mathfrak m M$ is injective then $u$ is injective. In this case $M/u(N)$ is flat over $R$.

Proof. First we claim that $u_ n : N/{\mathfrak m}^ nN \to M/{\mathfrak m}^ nM$ is injective for all $n \geq 1$. We proceed by induction, the base case is that $\overline{u} = u_1$ is injective. By our assumption that $M$ is flat over $R$ we have a short exact sequence $0 \to M \otimes _ R {\mathfrak m}^ n/{\mathfrak m}^{n + 1} \to M/{\mathfrak m}^{n + 1}M \to M/{\mathfrak m}^ n M \to 0$. Also, $M \otimes _ R {\mathfrak m}^ n/{\mathfrak m}^{n + 1} = M/{\mathfrak m}M \otimes _{R/{\mathfrak m}} {\mathfrak m}^ n/{\mathfrak m}^{n + 1}$. We have a similar exact sequence $N \otimes _ R {\mathfrak m}^ n/{\mathfrak m}^{n + 1} \to N/{\mathfrak m}^{n + 1}N \to N/{\mathfrak m}^ n N \to 0$ for $N$ except we do not have the zero on the left. We also have $N \otimes _ R {\mathfrak m}^ n/{\mathfrak m}^{n + 1} = N/{\mathfrak m}N \otimes _{R/{\mathfrak m}} {\mathfrak m}^ n/{\mathfrak m}^{n + 1}$. Thus the map $u_{n + 1}$ is injective as both $u_ n$ and the map $\overline{u} \otimes \text{id}_{{\mathfrak m}^ n/{\mathfrak m}^{n + 1}}$ are.

By Krull's intersection theorem (Lemma 10.51.4) applied to $N$ over the ring $S$ and the ideal $\mathfrak mS$ we have $\bigcap \mathfrak m^ nN = 0$. Thus the injectivity of $u_ n$ for all $n$ implies $u$ is injective.

To show that $M/u(N)$ is flat over $R$, it suffices to show that $\text{Tor}_1^ R(M/u(N), R/I) = 0$ for every ideal $I \subset R$, see Lemma 10.75.8. From the short exact sequence

\[ 0 \to N \xrightarrow {u} M \to M/u(N) \to 0 \]

and the flatness of $M$ we obtain an exact sequence of Tors

\[ 0 \to \text{Tor}_1^ R(M/u(N), R/I) \to N/IN \to M/IM \]

See Lemma 10.75.2. Thus it suffices to show that $N/IN$ injects into $M/IM$. Note that $R/I \to S/IS$ is a local homomorphism of Noetherian local rings, $N/IN \to M/IM$ is a map of $R/I$-modules, $N/IN$ is finite over $S/IS$, and $M/IM$ is flat over $R/I$ and $u \bmod I : N/IN \to M/IM$ is injective modulo $\mathfrak m$. Thus we may apply the first part of the proof to $u \bmod I$ and we conclude. $\square$


Comments (4)

Comment #3817 by Alapan Mukhopadhyay on

In the diagram is to be replaced by .

Comment #6515 by Jefferson Baudin on

After showing that is injective, I believe there is a less "technical-looking" proof that "it is enough to show that is injective" :

To show flatness of , it is enough to show that for all ideals of . We have the short exact sequence which, after tensoring by , gives where we used flatness of . Hence we get what we wanted.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00ME. Beware of the difference between the letter 'O' and the digit '0'.