Definition 10.103.1. Let $R$ be a Noetherian local ring. Let $M$ be a finite $R$-module. We say $M$ is Cohen-Macaulay if $\dim (\text{Supp}(M)) = \text{depth}(M)$.
Definition 10.103.1. Let $R$ be a Noetherian local ring. Let $M$ be a finite $R$-module. We say $M$ is Cohen-Macaulay if $\dim (\text{Supp}(M)) = \text{depth}(M)$.
Comments (0)
There are also: