The Stacks project

Proposition 10.103.4. Let $R$ be a Noetherian local ring, with maximal ideal $\mathfrak m$. Let $M$ be a Cohen-Macaulay module over $R$ whose support has dimension $d$. Suppose that $g_1, \ldots , g_ c$ are elements of $\mathfrak m$ such that $\dim (\text{Supp}(M/(g_1, \ldots , g_ c)M)) = d - c$. Then $g_1, \ldots , g_ c$ is an $M$-regular sequence, and can be extended to a maximal $M$-regular sequence.

Proof. Let $Z = \text{Supp}(M) \subset \mathop{\mathrm{Spec}}(R)$. By Lemma 10.60.13 in the chain $Z \supset Z \cap V(g_1) \supset \ldots \supset Z \cap V(g_1, \ldots , g_ c)$ each step decreases the dimension at most by $1$. Hence by assumption each step decreases the dimension by exactly $1$ each time. Thus we may successively apply Lemma 10.103.3 to the modules $M/(g_1, \ldots , g_ i)$ and the element $g_{i + 1}$.

To extend $g_1, \ldots , g_ c$ by one element if $c < d$ we simply choose an element $g_{c + 1} \in \mathfrak m$ which is not in any of the finitely many minimal primes of $Z \cap V(g_1, \ldots , g_ c)$, using Lemma 10.15.2. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 10.103: Cohen-Macaulay modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00N6. Beware of the difference between the letter 'O' and the digit '0'.