Definition 10.103.8. Let R be a Noetherian local ring. A finite module M over R is called a maximal Cohen-Macaulay module if \text{depth}(M) = \dim (R).
Definition 10.103.8. Let R be a Noetherian local ring. A finite module M over R is called a maximal Cohen-Macaulay module if \text{depth}(M) = \dim (R).
Comments (0)
There are also: