Lemma 10.103.9. Let $R$ be a Noetherian local ring. Assume there exists a Cohen-Macaulay module $M$ with $\mathop{\mathrm{Spec}}(R) = \text{Supp}(M)$. Then any maximal chain of prime ideals $\mathfrak p_0 \subset \mathfrak p_1 \subset \ldots \subset \mathfrak p_ n$ has length $n = \dim (R)$.
In a local Cohen-Macaulay ring, any maximal chain of prime ideals has length equal to the dimension.
Proof. We will prove this by induction on $\dim (R)$. If $\dim (R) = 0$, then the statement is clear. Assume $\dim (R) > 0$. Then $n > 0$. Choose an element $x \in \mathfrak p_1$, with $x$ not in any of the minimal primes of $R$, and in particular $x \not\in \mathfrak p_0$. (See Lemma 10.15.2.) Then $\dim (R/xR) = \dim (R) - 1$ by Lemma 10.60.13. The module $M/xM$ is Cohen-Macaulay over $R/xR$ by Proposition 10.103.4 and Lemma 10.103.6. The support of $M/xM$ is $\mathop{\mathrm{Spec}}(R/xR)$ by Lemma 10.40.9. After replacing $x$ by $x^ n$ for some $n$, we may assume that $\mathfrak p_1$ is an associated prime of $M/xM$, see Lemma 10.72.8. By Lemma 10.103.7 we conclude that $\mathfrak p_1/(x)$ is a minimal prime of $R/xR$. It follows that the chain $\mathfrak p_1/(x) \subset \ldots \subset \mathfrak p_ n/(x)$ is a maximal chain of primes in $R/xR$. By induction we find that this chain has length $\dim (R/xR) = \dim (R) - 1$ as desired. $\square$
Comments (9)
Comment #2213 by David Savitt on
Comment #2214 by Johan on
Comment #2215 by David Savitt on
Comment #2216 by David Savitt on
Comment #2218 by Johan on
Comment #2219 by Johan on
Comment #2223 by Johan on
Comment #6600 by WhatJiaranEatsTonight on
Comment #6846 by Johan on
There are also: