Lemma 10.104.9. Let $R$ be a local Noetherian Cohen-Macaulay ring of dimension $d$. Let $M$ be a finite $R$-module of depth $e$. There exists an exact complex
\[ 0 \to K \to F_{d-e-1} \to \ldots \to F_0 \to M \to 0 \]
with each $F_ i$ finite free and $K$ maximal Cohen-Macaulay.
Comments (0)
There are also: