Lemma 10.106.6. Let $R$ be a regular local ring. Any maximal Cohen-Macaulay module over $R$ is free.

**Proof.**
Let $M$ be a maximal Cohen-Macaulay module over $R$. Let $x \in \mathfrak m$ be part of a regular sequence generating $\mathfrak m$. Then $x$ is a nonzerodivisor on $M$ by Proposition 10.103.4, and $M/xM$ is a maximal Cohen-Macaulay module over $R/xR$. By induction on $\dim (R)$ we see that $M/xM$ is free. We win by Lemma 10.106.5.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: