Lemma 10.115.5. Let $k$ be a field. Let $S$ be a finite type $k$ algebra and denote $X = \mathop{\mathrm{Spec}}(S)$. Let $\mathfrak q$ be a prime of $S$, and let $x \in X$ be the corresponding point. There exists a $g \in S$, $g \not\in \mathfrak q$ such that $\dim (S_ g) = \dim _ x(X) =: d$ and such that there exists a finite injective map $k[y_1, \ldots , y_ d] \to S_ g$.
Proof. Note that by definition $\dim _ x(X)$ is the minimum of the dimensions of $S_ g$ for $g \in S$, $g \not\in \mathfrak q$, i.e., the minimum is attained. Thus the lemma follows from Lemma 10.115.4. $\square$
Comments (2)
Comment #941 by JuanPablo on
Comment #942 by JuanPablo on
There are also: