Lemma 10.115.6. Let $k$ be a field. Let $\mathfrak q \subset k[x_1, \ldots , x_ n]$ be a prime ideal. Set $r = \text{trdeg}_ k\ \kappa (\mathfrak q)$. Then there exists a finite ring map $\varphi : k[y_1, \ldots , y_ n] \to k[x_1, \ldots , x_ n]$ such that $\varphi ^{-1}(\mathfrak q) = (y_{r + 1}, \ldots , y_ n)$.
Proof. By induction on $n$. The case $n = 0$ is clear. Assume $n > 0$. If $r = n$, then $\mathfrak q = (0)$ and the result is clear. Choose a nonzero $f \in \mathfrak q$. Of course $f$ is nonconstant. After applying an automorphism of the form
we may assume that $f$ is monic in $x_ n$ over $k[x_1, \ldots , x_ n]$, see Lemma 10.115.2. Hence the ring map
is finite. Moreover $y_ n \in \mathfrak q \cap k[y_1, \ldots , y_ n]$ by construction. Thus $\mathfrak q \cap k[y_1, \ldots , y_ n] = \mathfrak pk[y_1, \ldots , y_ n] + (y_ n)$ where $\mathfrak p \subset k[y_1, \ldots , y_{n - 1}]$ is a prime ideal. Note that $\kappa (\mathfrak p) \subset \kappa (\mathfrak q)$ is finite, and hence $r = \text{trdeg}_ k\ \kappa (\mathfrak p)$. Apply the induction hypothesis to the pair $(k[y_1, \ldots , y_{n - 1}], \mathfrak p)$ and we obtain a finite ring map $k[z_1, \ldots , z_{n - 1}] \to k[y_1, \ldots , y_{n - 1}]$ such that $\mathfrak p \cap k[z_1, \ldots , z_{n - 1}] = (z_{r + 1}, \ldots , z_{n - 1})$. We extend the ring map $k[z_1, \ldots , z_{n - 1}] \to k[y_1, \ldots , y_{n - 1}]$ to a ring map $k[z_1, \ldots , z_ n] \to k[y_1, \ldots , y_ n]$ by mapping $z_ n$ to $y_ n$. The composition of the ring maps
solves the problem. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: