Lemma 10.123.3. Let $R$ be a ring. Let $\varphi : R[x] \to S$ be a ring map. Let $t \in S$. Assume $t$ is integral over $R[x]$. Let $p \in R[x]$, $p = a_0 + a_1x + \ldots + a_ k x^ k$ such that $t \varphi (p) \in \mathop{\mathrm{Im}}(\varphi )$. Then there exists a $q \in R[x]$ and $n \geq 0$ such that $\varphi (a_ k)^ n t - \varphi (q)$ is integral over $R$.

Proof. Let $R'$ and $S'$ be the localization of $R$ and $S$ at the element $a_ k$. Let $\varphi ' : R'[x] \to S'$ be the localization of $\varphi$. Let $t' \in S'$ be the image of $t$. Set $p' = p/a_ k \in R'[x]$. Then $t' \varphi '(p') \in \mathop{\mathrm{Im}}(\varphi ')$ since $t \varphi (p) \in \mathop{\mathrm{Im}}(\varphi )$. As $p'$ is monic, by Lemma 10.123.2 there exists a $q' \in R'[x]$ such that $t' - \varphi '(q')$ is integral over $R'$. We may choose an $n \geq 0$ and an element $q \in R[x]$ such that $a_ k^ n q'$ is the image of $q$. Then $\varphi (a_ k)^ n t - \varphi (q)$ is an element of $S$ whose image in $S'$ is integral over $R'$. By Lemma 10.36.11 there exists an $m \geq 0$ such that $\varphi (a_ k)^ m(\varphi (a_ k)^ n t - \varphi (q))$ is integral over $R$. Thus $\varphi (a_ k)^{m + n}t - \varphi (a_ k^ m q)$ is integral over $R$ as desired. $\square$

## Comments (2)

Comment #3631 by Brian Conrad on

Why not localize at $a_k$ throughout from the start (harmless for the proof), to instantly reduce to the case $a_k=1$ handled by the Lemma invoked near the end of the argument and thereby avoid all of the futzing around here?

Comment #3730 by on

Great! This also means I can move Lemma 113.5.1 to the obsolte chapter as it is now no longer used. Changes are here.

There are also:

• 3 comment(s) on Section 10.123: Zariski's Main Theorem

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00PV. Beware of the difference between the letter 'O' and the digit '0'.