Lemma 10.123.10. Suppose $R \subset S$ is an inclusion of reduced rings. Assume $x \in S$ be strongly transcendental over $R$, and $S$ finite over $R[x]$. Then $R \to S$ is not quasi-finite at any prime of $S$.
Proof. Let $\mathfrak q \subset S$ be any prime. Choose a minimal prime $\mathfrak q' \subset \mathfrak q$. According to Lemmas 10.123.8 and 10.123.9 the extension $R/(R \cap \mathfrak q') \subset S/\mathfrak q'$ is not quasi-finite at the prime corresponding to $\mathfrak q$. By Lemma 10.122.6 the extension $R \to S$ is not quasi-finite at $\mathfrak q$. $\square$
Comments (0)
There are also: