The Stacks project

Lemma 10.128.8 (Critère de platitude par fibres). Let $R$, $S$, $S'$ be local rings and let $R \to S \to S'$ be local ring homomorphisms. Let $M$ be an $S'$-module. Let $\mathfrak m \subset R$ be the maximal ideal. Assume

  1. The ring maps $R \to S$ and $R \to S'$ are essentially of finite presentation.

  2. The module $M$ is of finite presentation over $S'$.

  3. The module $M$ is not zero.

  4. The module $M/\mathfrak mM$ is a flat $S/\mathfrak mS$-module.

  5. The module $M$ is a flat $R$-module.

Then $S$ is flat over $R$ and $M$ is a flat $S$-module.

Proof. As in the proof of Lemma 10.127.11 we may first write $R = \mathop{\mathrm{colim}}\nolimits R_\lambda $ as a directed colimit of local $\mathbf{Z}$-algebras which are essentially of finite type. Denote $\mathfrak p_\lambda $ the maximal ideal of $R_\lambda $. Next, we may assume that for some $\lambda _1 \in \Lambda $ there exist $f_{j, \lambda _1} \in R_{\lambda _1}[x_1, \ldots , x_ n]$ such that

\[ S = \mathop{\mathrm{colim}}\nolimits _{\lambda \geq \lambda _1} S_\lambda , \text{ with } S_\lambda = (R_\lambda [x_1, \ldots , x_ n]/ (f_{1, \lambda }, \ldots , f_{u, \lambda }))_{\mathfrak q_\lambda } \]

For some $\lambda _2 \in \Lambda $, $\lambda _2 \geq \lambda _1$ there exist $g_{j, \lambda _2} \in R_{\lambda _2}[x_1, \ldots , x_ n, y_1, \ldots , y_ m]$ with images $\overline{g}_{j, \lambda _2} \in S_{\lambda _2}[y_1, \ldots , y_ m]$ such that

\[ S' = \mathop{\mathrm{colim}}\nolimits _{\lambda \geq \lambda _2} S'_\lambda , \text{ with } S'_\lambda = (S_\lambda [y_1, \ldots , y_ m]/ (\overline{g}_{1, \lambda }, \ldots , \overline{g}_{v, \lambda }))_{\overline{\mathfrak q}'_\lambda } \]

Note that this also implies that

\[ S'_\lambda = (R_\lambda [x_1, \ldots , x_ n, y_1, \ldots , y_ m]/ (g_{1, \lambda }, \ldots , g_{v, \lambda }))_{\mathfrak q'_\lambda } \]

Choose a presentation

\[ (S')^{\oplus s} \to (S')^{\oplus t} \to M \to 0 \]

of $M$ over $S'$. Let $A \in \text{Mat}(t \times s, S')$ be the matrix of the presentation. For some $\lambda _3 \in \Lambda $, $\lambda _3 \geq \lambda _2$ we can find a matrix $A_{\lambda _3} \in \text{Mat}(t \times s, S_{\lambda _3})$ which maps to $A$. For all $\lambda \geq \lambda _3$ we let $M_\lambda = \mathop{\mathrm{Coker}}((S'_\lambda )^{\oplus s} \xrightarrow {A_\lambda } (S'_\lambda )^{\oplus t})$.

With these choices, we have for each $\lambda _3 \leq \lambda \leq \mu $ that $S_\lambda \otimes _{R_{\lambda }} R_\mu \to S_\mu $ is a localization, $S'_\lambda \otimes _{S_{\lambda }} S_\mu \to S'_\mu $ is a localization, and the map $M_\lambda \otimes _{S'_\lambda } S'_\mu \to M_\mu $ is an isomorphism. This also implies that $S'_\lambda \otimes _{R_{\lambda }} R_\mu \to S'_\mu $ is a localization. Thus, since $M$ is flat over $R$ we see by Lemma 10.128.3 that for all $\lambda $ big enough the module $M_\lambda $ is flat over $R_\lambda $. Moreover, note that $ \mathfrak m = \mathop{\mathrm{colim}}\nolimits \mathfrak p_\lambda $, $ S/\mathfrak mS = \mathop{\mathrm{colim}}\nolimits S_\lambda /\mathfrak p_\lambda S_\lambda $, $ S'/\mathfrak mS' = \mathop{\mathrm{colim}}\nolimits S'_\lambda /\mathfrak p_\lambda S'_\lambda $, and $ M/\mathfrak mM = \mathop{\mathrm{colim}}\nolimits M_\lambda /\mathfrak p_\lambda M_\lambda $. Also, for each $\lambda _3 \leq \lambda \leq \mu $ we see (from the properties listed above) that

\[ S'_\lambda /\mathfrak p_\lambda S'_\lambda \otimes _{S_{\lambda }/\mathfrak p_\lambda S_\lambda } S_\mu /\mathfrak p_\mu S_\mu \longrightarrow S'_\mu /\mathfrak p_\mu S'_\mu \]

is a localization, and the map

\[ M_\lambda / \mathfrak p_\lambda M_\lambda \otimes _{S'_\lambda /\mathfrak p_\lambda S'_\lambda } S'_\mu /\mathfrak p_\mu S'_\mu \longrightarrow M_\mu /\mathfrak p_\mu M_\mu \]

is an isomorphism. Hence the system $(S_\lambda /\mathfrak p_\lambda S_\lambda \to S'_\lambda /\mathfrak p_\lambda S'_\lambda , M_\lambda /\mathfrak p_\lambda M_\lambda )$ is a system as in Lemma 10.127.13 as well. We may apply Lemma 10.128.3 again because $M/\mathfrak m M$ is assumed flat over $S/\mathfrak mS$ and we see that $M_\lambda /\mathfrak p_\lambda M_\lambda $ is flat over $S_\lambda /\mathfrak p_\lambda S_\lambda $ for all $\lambda $ big enough. Thus for $\lambda $ big enough the data $R_\lambda \to S_\lambda \to S'_\lambda , M_\lambda $ satisfies the hypotheses of Lemma 10.99.15. Pick such a $\lambda $. Then $S = S_\lambda \otimes _{R_\lambda } R$ is flat over $R$, and $M = M_\lambda \otimes _{S_\lambda } S$ is flat over $S$ (since the base change of a flat module is flat). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00R7. Beware of the difference between the letter 'O' and the digit '0'.