The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.127.7. Let $R \to S$ be a local homomorphism of local rings. Let $I \not= R$ be an ideal in $R$. Let $M$ be an $S$-module. Assume

  1. $S$ is essentially of finite presentation over $R$,

  2. $M$ is of finite presentation over $S$,

  3. $\text{Tor}_1^ R(M, R/I) = 0$, and

  4. $M/IM$ is flat over $R/I$.

Then $M$ is flat over $R$.

Proof. Let $\Lambda $, $R_\lambda \to S_\lambda $, $M_\lambda $ be as in Lemma 10.126.13. Denote $I_\lambda \subset R_\lambda $ the inverse image of $I$. In this case the system $R/I \to S/IS$, $M/IM$, $R_\lambda \to S_\lambda /I_\lambda S_\lambda $, and $M_\lambda /I_\lambda M_\lambda $ satisfies the conclusions of Lemma 10.126.13 as well. Hence by Lemma 10.127.3 we may assume (after shrinking the index set $\Lambda $) that $M_\lambda /I_\lambda M_\lambda $ is flat for all $\lambda $. Pick some $\lambda $ and consider

\[ \text{Tor}_1^{R_\lambda }(M_\lambda , R_\lambda /I_\lambda ) = \mathop{\mathrm{Ker}}(I_\lambda \otimes _{R_\lambda } M_\lambda \to M_\lambda ). \]

See Remark 10.74.9. The right hand side shows that this is a finitely generated $S_\lambda $-module (because $S_\lambda $ is Noetherian and the modules in question are finite). Let $\xi _1, \ldots , \xi _ n$ be generators. Because $\text{Tor}^1_ R(M, R/I) = 0$ and since $\otimes $ commutes with colimits we see there exists a $\lambda ' \geq \lambda $ such that each $\xi _ i$ maps to zero in $\text{Tor}_1^{R_{\lambda '}}(M_{\lambda '}, R_{\lambda '}/I_{\lambda '})$. The composition of the maps

\[ \xymatrix{ R_{\lambda '} \otimes _{R_\lambda } \text{Tor}_1^{R_\lambda }(M_\lambda , R_\lambda /I_\lambda ) \ar[d]^{\text{surjective by Lemma 00MM}} \\ \text{Tor}_1^{R_\lambda }(M_\lambda , R_{\lambda '}/I_\lambda R_{\lambda '}) \ar[d]^{\text{surjective up to localization by Lemma 00MN}} \\ \text{Tor}_1^{R_{\lambda '}}(M_{\lambda '}, R_{\lambda '}/I_\lambda R_{\lambda '}) \ar[d]^{\text{surjective by Lemma 00MM}} \\ \text{Tor}_1^{R_{\lambda '}}(M_{\lambda '}, R_{\lambda '}/I_{\lambda '}). } \]

is surjective up to a localization by the reasons indicated. The localization is necessary since $M_{\lambda '}$ is not equal to $M_\lambda \otimes _{R_\lambda } R_{\lambda '}$. Namely, it is equal to $M_\lambda \otimes _{S_\lambda } S_{\lambda '}$ and $S_{\lambda '}$ is the localization of $S_{\lambda } \otimes _{R_\lambda } R_{\lambda '}$ whence the statement up to a localization (or tensoring with $S_{\lambda '}$). Note that Lemma 10.98.12 applies to the first and third arrows because $M_\lambda /I_\lambda M_\lambda $ is flat over $R_\lambda /I_\lambda $ and because $M_{\lambda '}/I_\lambda M_{\lambda '}$ is flat over $R_{\lambda '}/I_\lambda R_{\lambda '}$ as it is a base change of the flat module $M_\lambda /I_\lambda M_\lambda $. The composition maps the generators $\xi _ i$ to zero as we explained above. We finally conclude that $\text{Tor}_1^{R_{\lambda '}}(M_{\lambda '}, R_{\lambda '}/I_{\lambda '})$ is zero. This implies that $M_{\lambda '}$ is flat over $R_{\lambda '}$ by Lemma 10.98.10. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0471. Beware of the difference between the letter 'O' and the digit '0'.