The Stacks project

Lemma 10.135.10. Let $K/k$ be a field extension. Let $S$ be a finite type algebra over $k$. Let $\mathfrak q_ K$ be a prime of $S_ K = K \otimes _ k S$ and let $\mathfrak q$ be the corresponding prime of $S$. Then $S_{\mathfrak q}$ is a complete intersection over $k$ (Definition 10.135.5) if and only if $(S_ K)_{\mathfrak q_ K}$ is a complete intersection over $K$.

Proof. Choose a presentation $S = k[x_1, \ldots , x_ n]/I$. This gives a presentation $S_ K = K[x_1, \ldots , x_ n]/I_ K$ where $I_ K = K \otimes _ k I$. Let $\mathfrak q_ K' \subset K[x_1, \ldots , x_ n]$, resp. $\mathfrak q' \subset k[x_1, \ldots , x_ n]$ be the corresponding prime. We will show that the equivalent conditions of Lemma 10.135.4 hold for the pair $(S = k[x_1, \ldots , x_ n]/I, \mathfrak q)$ if and only if they hold for the pair $(S_ K = K[x_1, \ldots , x_ n]/I_ K, \mathfrak q_ K)$. The lemma will follow from this (see Lemma 10.135.8).

By Lemma 10.116.6 we have $\dim _{\mathfrak q} S = \dim _{\mathfrak q_ K} S_ K$. Hence the integer $c$ occurring in Lemma 10.135.4 is the same for the pair $(S = k[x_1, \ldots , x_ n]/I, \mathfrak q)$ as for the pair $(S_ K = K[x_1, \ldots , x_ n]/I_ K, \mathfrak q_ K)$. On the other hand we have

\begin{eqnarray*} I \otimes _{k[x_1, \ldots , x_ n]} \kappa (\mathfrak q') \otimes _{\kappa (\mathfrak q')} \kappa (\mathfrak q_ K') & = & I \otimes _{k[x_1, \ldots , x_ n]} \kappa (\mathfrak q_ K') \\ & = & I \otimes _{k[x_1, \ldots , x_ n]} K[x_1, \ldots , x_ n] \otimes _{K[x_1, \ldots , x_ n]} \kappa (\mathfrak q_ K') \\ & = & (K \otimes _ k I) \otimes _{K[x_1, \ldots , x_ n]} \kappa (\mathfrak q_ K') \\ & = & I_ K \otimes _{K[x_1, \ldots , x_ n]} \kappa (\mathfrak q'_ K). \end{eqnarray*}

Therefore, $\dim _{\kappa (\mathfrak q')} I \otimes _{k[x_1, \ldots , x_ n]} \kappa (\mathfrak q') = \dim _{\kappa (\mathfrak q'_ K)} I_ K \otimes _{K[x_1, \ldots , x_ n]} \kappa (\mathfrak q_ K')$. Thus it follows from Nakayama's Lemma 10.20.1 that the minimal number of generators of $I_{\mathfrak q'}$ is the same as the minimal number of generators of $(I_ K)_{\mathfrak q'_ K}$. Thus the lemma follows from characterization (2) of Lemma 10.135.4. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 10.135: Local complete intersections

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00SI. Beware of the difference between the letter 'O' and the digit '0'.