Definition 10.136.5. Let R \to S be a ring map. We say that R \to S is a relative global complete intersection if there exists a presentation S = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c) and every nonempty fibre of \mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R) has dimension n - c. We will say “let S = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c) be a relative global complete intersection” to indicate this situation.
Comments (0)
There are also: