The Stacks project

Lemma 10.140.5. Let $k$ be a field. Let $S$ be a finite type $k$-algebra. Let $\mathfrak q \subset S$ be a prime. Assume $\kappa (\mathfrak q)$ is separable over $k$. The following are equivalent:

  1. The algebra $S$ is smooth at $\mathfrak q$ over $k$.

  2. The ring $S_{\mathfrak q}$ is regular.

Proof. Denote $R = S_{\mathfrak q}$ and denote its maximal by $\mathfrak m$ and its residue field $\kappa $. By Lemma 10.140.4 and 10.131.9 we see that there is a short exact sequence

\[ 0 \to \mathfrak m/\mathfrak m^2 \to \Omega _{R/k} \otimes _ R \kappa \to \Omega _{\kappa /k} \to 0 \]

Note that $\Omega _{R/k} = \Omega _{S/k, \mathfrak q}$, see Lemma 10.131.8. Moreover, since $\kappa $ is separable over $k$ we have $\dim _{\kappa } \Omega _{\kappa /k} = \text{trdeg}_ k(\kappa )$. Hence we get

\[ \dim _{\kappa } \Omega _{R/k} \otimes _ R \kappa = \dim _\kappa \mathfrak m/\mathfrak m^2 + \text{trdeg}_ k (\kappa ) \geq \dim R + \text{trdeg}_ k (\kappa ) = \dim _{\mathfrak q} S \]

(see Lemma 10.116.3 for the last equality) with equality if and only if $R$ is regular. Thus we win by applying Lemma 10.140.3. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00TV. Beware of the difference between the letter 'O' and the digit '0'.