Processing math: 0%

The Stacks project

Lemma 7.3.2. The injective (resp. surjective) maps defined above are exactly the monomorphisms (resp. epimorphisms) of \textit{PSh}(\mathcal{C}). A map is an isomorphism if and only if it is both injective and surjective.

Proof. We shall show that \varphi : \mathcal{F} \to \mathcal{G} is injective if and only if it is a monomorphism of \textit{PSh}(\mathcal{C}). Indeed, the “only if” direction is straightforward, so let us show the “if” direction. Assume that \varphi is a monomorphism. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}); we need to show that \varphi _ U is injective. So let a, b \in \mathcal{F}(U) be such that \varphi _ U (a) = \varphi _ U (b); we need to check that a = b. Under the isomorphism (7.2.1.1), the elements a and b of \mathcal{F}(U) correspond to two natural transformations a', b' \in \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}). Similarly, under the analogous isomorphism \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{G}) = \mathcal{G}(U), the two equal elements \varphi _ U (a) and \varphi _ U (b) of \mathcal{G}(U) correspond to the two natural transformations \varphi \circ a', \varphi \circ b' \in \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{G}), which therefore must also be equal. So \varphi \circ a' = \varphi \circ b', and thus a' = b' (since \varphi is monic), whence a = b. This finishes (1).

We shall show that \varphi : \mathcal{F} \to \mathcal{G} is surjective if and only if it is an epimorphism of \textit{PSh}(\mathcal{C}). Indeed, the “only if” direction is straightforward, so let us show the “if” direction. Assume that \varphi is an epimorphism.

For any two morphisms f : A \to B and g : A \to C in the category \textit{Sets}, we let \text{inl}_{f,g} and \text{inr}_{f,g} denote the two canonical maps from B and C to B \coprod _ A C. (Here, the pushout is evaluated in \textit{Sets}.)

Now, we define a presheaf \mathcal{H} of sets on \mathcal{C} by setting \mathcal{H}(U) = \mathcal{G}(U) \coprod _{\mathcal{F}(U)} \mathcal{G}(U) (where the pushout is evaluated in \textit{Sets} and induced by the map \varphi _ U : \mathcal{F}(U) \to \mathcal{G}(U)) for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}); its action on morphisms is defined in the obvious way (by the functoriality of pushout). Then, there are two natural transformations i_1 : \mathcal{G} \to \mathcal{H} and i_2 : \mathcal{G} \to \mathcal{H} whose components at an object U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) are given by the maps \text{inl}_{\varphi _ U, \varphi _ U} and \text{inr}_{\varphi _ U, \varphi _ U}, respectively. The definition of a pushout shows that i_1 \circ \varphi = i_2 \circ \varphi , whence i_1 = i_2 (since \varphi is an epimorphism). Thus, for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), we have \text{inl}_{\varphi _ U, \varphi _ U} = \text{inr}_{\varphi _ U, \varphi _ U}. Thus, \varphi _ U must be surjective (since a simple combinatorial argument shows that if f : A \to B is a morphism in \textit{Sets}, then \text{inl}_{f,f} = \text{inr}_{f,f} if and only if f is surjective). In other words, \varphi is surjective, and (2) is proven.

We shall show that \varphi : \mathcal{F} \to \mathcal{G} is both injective and surjective if and only if it is an isomorphism of \textit{PSh}(\mathcal{C}). This time, the “if” direction is straightforward. To prove the “only if” direction, it suffices to observe that if \varphi is both injective and surjective, then \varphi _ U is an invertible map for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), and the inverses of these maps for all U can be combined to a natural transformation \mathcal{G} \to \mathcal{F} which is an inverse to \varphi . \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.