The Stacks project

Definition 7.8.1. Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{ U_ i \to U\} _{i\in I}$ be a family of morphisms of $\mathcal{C}$ with fixed target. Let $\mathcal{V} = \{ V_ j \to V\} _{j\in J}$ be another.

  1. A morphism of families of maps with fixed target of $\mathcal{C}$ from $\mathcal{U}$ to $\mathcal{V}$, or simply a morphism from $\mathcal{U}$ to $\mathcal{V}$ is given by a morphism $U \to V$, a map of sets $\alpha : I \to J$ and for each $i\in I$ a morphism $U_ i \to V_{\alpha (i)}$ such that the diagram

    \[ \xymatrix{ U_ i \ar[r] \ar[d] & V_{\alpha (i)} \ar[d] \\ U \ar[r] & V } \]

    is commutative.

  2. In the special case that $U = V$ and $U \to V$ is the identity we call $\mathcal{U}$ a refinement of the family $\mathcal{V}$.


Comments (0)

There are also:

  • 6 comment(s) on Section 7.8: Families of morphisms with fixed target

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00VT. Beware of the difference between the letter 'O' and the digit '0'.