The Stacks project

Lemma 7.8.3. Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{ \varphi _ i : U_ i \to U\} _{i\in I}$, and $\mathcal{V} = \{ \psi _ j : V_ j \to U\} _{j\in J}$ be two families of morphisms with the same fixed target.

  1. If $\mathcal{U}$ and $\mathcal{V}$ are combinatorially equivalent then they are tautologically equivalent.

  2. If $\mathcal{U}$ and $\mathcal{V}$ are tautologically equivalent then $\mathcal{U}$ is a refinement of $\mathcal{V}$ and $\mathcal{V}$ is a refinement of $\mathcal{U}$.

  3. The relation “being combinatorially equivalent” is an equivalence relation on all families of morphisms with fixed target.

  4. The relation “being tautologically equivalent” is an equivalence relation on all families of morphisms with fixed target.

  5. The relation “$\mathcal{U}$ refines $\mathcal{V}$ and $\mathcal{V}$ refines $\mathcal{U}$” is an equivalence relation on all families of morphisms with fixed target.

Proof. Omitted. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 7.8: Families of morphisms with fixed target

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00VV. Beware of the difference between the letter 'O' and the digit '0'.