Proposition 7.10.12. The canonical map $\mathcal{F} \to \mathcal{F}^\#$ has the following universal property: For any map $\mathcal{F} \to \mathcal{G}$, where $\mathcal{G}$ is a sheaf of sets, there is a unique map $\mathcal{F}^\# \to \mathcal{G}$ such that $\mathcal{F} \to \mathcal{F}^\# \to \mathcal{G}$ equals the given map.

Proof. By Lemma 7.10.4 we get a commutative diagram

$\xymatrix{ \mathcal{F} \ar[r] \ar[d] & \mathcal{F}^{+} \ar[r] \ar[d] & \mathcal{F}^{++} \ar[d] \\ \mathcal{G} \ar[r] & \mathcal{G}^{+} \ar[r] & \mathcal{G}^{++} }$

and by Theorem 7.10.10 the lower horizontal maps are isomorphisms. The uniqueness follows from Lemma 7.10.8 which says that every section of $\mathcal{F}^\#$ locally comes from sections of $\mathcal{F}$. $\square$

There are also:

• 8 comment(s) on Section 7.10: Sheafification

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).