The Stacks project

Proposition 7.10.12. The canonical map $\mathcal{F} \to \mathcal{F}^\# $ has the following universal property: For any map $\mathcal{F} \to \mathcal{G}$, where $\mathcal{G}$ is a sheaf of sets, there is a unique map $\mathcal{F}^\# \to \mathcal{G}$ such that $\mathcal{F} \to \mathcal{F}^\# \to \mathcal{G}$ equals the given map.

Proof. By Lemma 7.10.4 we get a commutative diagram

\[ \xymatrix{ \mathcal{F} \ar[r] \ar[d] & \mathcal{F}^{+} \ar[r] \ar[d] & \mathcal{F}^{++} \ar[d] \\ \mathcal{G} \ar[r] & \mathcal{G}^{+} \ar[r] & \mathcal{G}^{++} } \]

and by Theorem 7.10.10 the lower horizontal maps are isomorphisms. The uniqueness follows from Lemma 7.10.8 which says that every section of $\mathcal{F}^\# $ locally comes from sections of $\mathcal{F}$. $\square$


Comments (0)

There are also:

  • 8 comment(s) on Section 7.10: Sheafification

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00WH. Beware of the difference between the letter 'O' and the digit '0'.