Lemma 7.27.4. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Assume that every $X$ in $\mathcal{C}$ has at most one morphism to $U$. Let $\mathcal{F}$ be a sheaf on $\mathcal{C}/U$. The canonical maps $\mathcal{F} \to j_ U^{-1}j_{U!}\mathcal{F}$ and $j_ U^{-1}j_{U*}\mathcal{F} \to \mathcal{F}$ are isomorphisms.
Proof. This is a special case of Lemma 7.21.7 because the assumption on $U$ is equivalent to the fully faithfulness of the localization functor $\mathcal{C}/U \to \mathcal{C}$. $\square$
Comments (0)