Lemma 7.27.3. Let $\mathcal{C}$ be a site. Let $U \to V$ be a morphism of $\mathcal{C}$. Assume $\mathcal{C}$ has fibre products. Let $j$ be as in Lemma 7.25.8. Then

the functor $j : \mathcal{C}/U \to \mathcal{C}/V$ has a continuous right adjoint, namely the functor $v : (X/V) \mapsto (X \times _ V U/U)$,

the functor $v$ defines a morphism of sites $\mathcal{C}/U \to \mathcal{C}/V$ whose associated morphism of topoi equals $j$, and

we have $j_*\mathcal{F}(X/V) = \mathcal{F}(X \times _ V U/U)$.

## Comments (0)