Lemma 7.27.2. Let \mathcal{C} be a site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). Assume \mathcal{C} has products of pairs of objects. Then
the functor j_ U has a continuous right adjoint, namely the functor v(X) = X \times U / U,
the functor v defines a morphism of sites \mathcal{C}/U \to \mathcal{C} whose associated morphism of topoi equals j_ U : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}), and
we have j_{U*}\mathcal{F}(X) = \mathcal{F}(X \times U/U).
Comments (0)