Lemma 7.27.1. Let \mathcal{C} be a site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). If the topology on \mathcal{C} is subcanonical, see Definition 7.12.2, and if \mathcal{G} is a sheaf on \mathcal{C}/U, then
j_{U!}(\mathcal{G})(V) = \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U),
in other words sheafification is not necessary in Lemma 7.25.2.
Proof.
Let \mathcal{V} = \{ V_ i \to V\} _{i \in I} be a covering of V in the site \mathcal{C}. We are going to check the sheaf condition for the presheaf \mathcal{H} of Lemma 7.25.2 directly. Let (s_ i, \varphi _ i)_{i \in I} \in \prod _ i \mathcal{H}(V_ i), This means \varphi _ i : V_ i \to U is a morphism in \mathcal{C}, and s_ i \in \mathcal{G}(V_ i \xrightarrow {\varphi _ i} U). The restriction of the pair (s_ i, \varphi _ i) to V_ i \times _ V V_ j is the pair (s_ i|_{V_ i \times _ V V_ j/U}, \text{pr}_1 \circ \varphi _ i), and likewise the restriction of the pair (s_ j, \varphi _ j) to V_ i \times _ V V_ j is the pair (s_ j|_{V_ i \times _ V V_ j/U}, \text{pr}_2 \circ \varphi _ j). Hence, if the family (s_ i, \varphi _ i) lies in \check{H}^0(\mathcal{V}, \mathcal{H}), then we see that \text{pr}_1 \circ \varphi _ i = \text{pr}_2 \circ \varphi _ j. The condition that the topology on \mathcal{C} is weaker than the canonical topology then implies that there exists a unique morphism \varphi : V \to U such that \varphi _ i is the composition of V_ i \to V with \varphi . At this point the sheaf condition for \mathcal{G} guarantees that the sections s_ i glue to a unique section s \in \mathcal{G}(V \xrightarrow {\varphi } U). Hence (s, \varphi ) \in \mathcal{H}(V) as desired.
\square
Comments (0)