The Stacks project

Lemma 12.3.7. Let $\mathcal{A}$, $\mathcal{B}$ be preadditive categories. Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor. Then $F$ transforms direct sums to direct sums and zero to zero.

Proof. Suppose $F$ is additive. A direct sum $z$ of $x$ and $y$ is characterized by having morphisms $i : x \to z$, $j : y \to z$, $p : z \to x$ and $q : z \to y$ such that $p \circ i = \text{id}_ x$, $q \circ j = \text{id}_ y$, $p \circ j = 0$, $q \circ i = 0$ and $i \circ p + j \circ q = \text{id}_ z$, according to Remark 12.3.6. Clearly $F(x), F(y), F(z)$ and the morphisms $F(i), F(j), F(p), F(q)$ satisfy exactly the same relations (by additivity) and we see that $F(z)$ is a direct sum of $F(x)$ and $F(y)$. Hence, $F$ transforms direct sums to direct sums.

To see that $F$ transforms zero to zero, use the characterization (3) of the zero object in Lemma 12.3.2. $\square$

Comments (0)

There are also:

  • 8 comment(s) on Section 12.3: Preadditive and additive categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0105. Beware of the difference between the letter 'O' and the digit '0'.