The Stacks project

Lemma 12.5.2. Let $\mathcal{A}$ be a preadditive category. The additions on sets of morphisms make $\mathcal{A}^{opp}$ into a preadditive category. Furthermore, $\mathcal{A}$ is additive if and only if $\mathcal{A}^{opp}$ is additive, and $\mathcal{A}$ is abelian if and only if $\mathcal{A}^{opp}$ is abelian.

Proof. The first statement is straightforward. To see that $\mathcal{A}$ is additive if and only if $\mathcal{A}^{opp}$ is additive, recall that additivity can be characterized by the existence of a zero object and direct sums, which are both preserved when passing to the opposite category. Finally, to see that $\mathcal{A}$ is abelian if and only if $\mathcal{A}^{opp}$ is abelian, observes that kernels, cokernels, images and coimages in $\mathcal{A}^{opp}$ correspond to cokernels, kernels, coimages and images in $\mathcal{A}$, respectively. $\square$


Comments (0)

There are also:

  • 9 comment(s) on Section 12.5: Abelian categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 010A. Beware of the difference between the letter 'O' and the digit '0'.