Lemma 12.12.4. Let $\mathcal{A}, \mathcal{B}$ be abelian categories. Let $F = (F^ n, \delta _ F)$ be a $\delta $-functor from $\mathcal{A}$ to $\mathcal{B}$. Suppose that for every $n > 0$ and any $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ there exists an injective morphism $u : A \to B$ (depending on $A$ and $n$) such that $F^ n(u) : F^ n(A) \to F^ n(B)$ is zero. Then $F$ is a universal $\delta $-functor.

**Proof.**
Let $G = (G^ n, \delta _ G)$ be a $\delta $-functor from $\mathcal{A}$ to $\mathcal{B}$ and let $t : F^0 \to G^0$ be a morphism of functors. We have to show there exists a unique morphism of $\delta $-functors $\{ t^ n\} _{n \geq 0} : F \to G$ such that $t = t^0$. We construct $t^ n$ by induction on $n$. For $n = 0$ we set $t^0 = t$. Suppose we have already constructed a unique sequence of transformation of functors $t^ i$ for $i \leq n$ compatible with the maps $\delta $ in degrees $\leq n$.

Let $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. By assumption we may choose a embedding $u : A \to B$ such that $F^{n + 1}(u) = 0$. Let $C = B/u(A)$. The long exact cohomology sequence for the short exact sequence $0 \to A \to B \to C \to 0$ and the $\delta $-functor $F$ gives that $F^{n + 1}(A) = \mathop{\mathrm{Coker}}(F^ n(B) \to F^ n(C))$ by our choice of $u$. Since we have already defined $t^ n$ we can set

equal to the unique map such that

commutes. This is clearly uniquely determined by the requirements imposed. We omit the verification that this defines a transformation of functors. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #373 by Fan on

Comment #384 by Johan on

Comment #8344 by Ingo Blechschmidt on

Comment #8345 by Johan on