Lemma 12.13.1. Let \mathcal{A} be an additive category. Let f, g : B_\bullet \to C_\bullet be morphisms of chain complexes. Suppose given morphisms of chain complexes a : A_\bullet \to B_\bullet , and c : C_\bullet \to D_\bullet . If \{ h_ i : B_ i \to C_{i + 1}\} defines a homotopy between f and g, then \{ c_{i + 1} \circ h_ i \circ a_ i\} defines a homotopy between c \circ f \circ a and c \circ g \circ a.
Hom functors of \text{Ch}(\mathcal{A}) respect the homotopy relation.
Proof. Omitted. \square
Comments (1)
Comment #7383 by Elías Guisado on
There are also: