Short exact sequences of complexes give rise to long exact sequences of (co)homology.

Lemma 12.13.12. Let $\mathcal{A}$ be an abelian category. Suppose that

$0 \to A^\bullet \to B^\bullet \to C^\bullet \to 0$

is a short exact sequence of chain complexes of $\mathcal{A}$. Then there is a canonical long exact cohomology sequence

$\xymatrix{ \ldots & \ldots & \ldots \ar[lld] \\ H^ i(A^\bullet ) \ar[r] & H^ i(B^\bullet ) \ar[r] & H^ i(C^\bullet ) \ar[lld] \\ H^{i + 1}(A^\bullet ) \ar[r] & H^{i + 1}(B^\bullet ) \ar[r] & H^{i + 1}(C^\bullet ) \ar[lld] \\ \ldots & \ldots & \ldots \\ }$

Proof. Omitted. The maps come from the Snake Lemma 12.5.17 applied to the diagrams

$\xymatrix{ & A^ i/\mathop{\mathrm{Im}}(d_ A^{i - 1}) \ar[r] \ar[d]^{d_ A^ i} & B^ i/\mathop{\mathrm{Im}}(d_ B^{i - 1}) \ar[r] \ar[d]^{d_ B^ i} & C^ i/\mathop{\mathrm{Im}}(d_ C^{i - 1}) \ar[r] \ar[d]^{d_ C^ i} & 0 \\ 0 \ar[r] & \mathop{\mathrm{Ker}}(d_ A^{i + 1}) \ar[r] & \mathop{\mathrm{Ker}}(d_ B^{i + 1}) \ar[r] & \mathop{\mathrm{Ker}}(d_ C^{i + 1}) & }$
$\square$

Comment #1223 by David Corwin on

Suggested slogan: Short exact sequences of complexes give rise to long exact sequences of homology

There are also:

• 1 comment(s) on Section 12.13: Complexes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).