Lemma 12.14.4. Let $\mathcal{A}$ be an abelian category. Let

$0 \to A_\bullet \to B_\bullet \to C_\bullet \to 0$

be a short exact sequence of complexes. Suppose that $\{ s_ n : C_ n \to B_ n\}$ is a family of morphisms which split the short exact sequences $0 \to A_ n \to B_ n \to C_ n \to 0$. Let $\pi _ n : B_ n \to A_ n$ be the associated projections, see Lemma 12.5.10. Then the family of morphisms

$\pi _{n - 1} \circ d_{B, n} \circ s_ n : C_ n \to A_{n - 1}$

define a morphism of complexes $\delta (s) : C_\bullet \to A[-1]_\bullet$.

Proof. Denote $i : A_\bullet \to B_\bullet$ and $q : B_\bullet \to C_\bullet$ the maps of complexes in the short exact sequence. Then $i_{n - 1} \circ \pi _{n - 1} \circ d_{B, n} \circ s_ n = d_{B, n} \circ s_ n - s_{n - 1} \circ d_{C, n}$. Hence $i_{n - 2} \circ d_{A, n - 1} \circ \pi _{n - 1} \circ d_{B, n} \circ s_ n = d_{B, n - 1} \circ (d_{B, n} \circ s_ n - s_{n - 1} \circ d_{C, n}) = - d_{B, n - 1} \circ s_{n - 1} \circ d_{C, n}$ as desired. $\square$

Comment #2655 by Ko Aoki on

Typo in the second sentence: "... be a sort exact sequence of complexes." should be replaced by "... be a short exact sequence of complexes."

There are also:

• 2 comment(s) on Section 12.14: Homotopy and the shift functor

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).