Lemma 12.14.10. Let \mathcal{A} be an additive category. Let
0 \to A^\bullet \to B^\bullet \to C^\bullet \to 0
be a complex (!) of complexes. Suppose that we are given splittings B^ n = A^ n \oplus C^ n compatible with the maps in the displayed sequence. Let s^ n : C^ n \to B^ n and \pi ^ n : B^ n \to A^ n be the corresponding maps. Then the family of morphisms
\pi ^{n + 1} \circ d_ B^ n \circ s^ n : C^ n \to A^{n + 1}
define a morphism of complexes \delta : C^\bullet \to A[1]^\bullet .
Proof.
Denote i : A^\bullet \to B^\bullet and q : B^\bullet \to C^\bullet the maps of complexes in the short exact sequence. Then i^{n + 1} \circ \pi ^{n + 1} \circ d_ B^ n \circ s^ n = d_ B^ n \circ s^ n - s^{n + 1} \circ d_ C^ n. Hence i^{n + 2} \circ d_ A^{n + 1} \circ \pi ^{n + 1} \circ d_ B^ n \circ s^ n = d_ B^{n + 1} \circ (d_ B^ n \circ s^ n - s^{n + 1} \circ d_ C^ n) = - d_ B^{n + 1} \circ s^{n + 1} \circ d_ C^ n as desired.
\square
Comments (7)
Comment #5076 by Remy on
Comment #5081 by Laurent Moret-Bailly on
Comment #5289 by Johan on
Comment #7427 by Elías Guisado on
Comment #7428 by Elías Guisado on
Comment #8369 by Elías Guisado on
Comment #8974 by Stacks project on
There are also: