Lemma 12.19.7. Let $\mathcal{A}$ be an abelian category. Let $(A, F)$, $(B, F)$ be filtered objects. Let $u : A \to B$ be a morphism of filtered objects. If $u$ is injective then $u$ is strict if and only if the filtration on $A$ is the induced filtration. If $u$ is surjective then $u$ is strict if and only if the filtration on $B$ is the quotient filtration.
Proof. This is immediate from the definition. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: