Lemma 12.24.4. Let $\mathcal{A}$ be an abelian category. Let $\alpha : (K^\bullet , F) \to (L^\bullet , F)$ be a morphism of filtered complexes of $\mathcal{A}$. Let $(E_ r(K), d_ r)_{r \geq 0}$, resp. $(E_ r(L), d_ r)_{r \geq 0}$ be the spectral sequence associated to $(K^\bullet , F)$, resp. $(L^\bullet , F)$. The morphism $\alpha $ induces a canonical morphism of spectral sequences $\{ \alpha _ r : E_ r(K) \to E_ r(L)\} _{r \geq 0}$ compatible with the bigradings.
Proof. Obvious from the explicit representation of the terms of the spectral sequences. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)