The Stacks project

Definition 13.3.1. Let $\mathcal{D}$ be an additive category. Let $[n] : \mathcal{D} \to \mathcal{D}$, $E \mapsto E[n]$ be a collection of additive functors indexed by $n \in \mathbf{Z}$ such that $[n] \circ [m] = [n + m]$ and $[0] = \text{id}$ (equality as functors). In this situation we define a triangle to be a sextuple $(X, Y, Z, f, g, h)$ where $X, Y, Z \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ and $f : X \to Y$, $g : Y \to Z$ and $h : Z \to X[1]$ are morphisms of $\mathcal{D}$. A morphism of triangles $(X, Y, Z, f, g, h) \to (X', Y', Z', f', g', h')$ is given by morphisms $a : X \to X'$, $b : Y \to Y'$ and $c : Z \to Z'$ of $\mathcal{D}$ such that $b \circ f = f' \circ a$, $c \circ g = g' \circ b$ and $a[1] \circ h = h' \circ c$.

Comments (2)

Comment #1392 by sdf on

The second line is badly phrased. Also, the correct word to use is "sextuple" rather than "sixtuple". May I suggest instead

"In this situation we define a {\it triangle } to be a sextuple..."

Comment #1409 by on

Dear sdf, many thanks for this and your other comments. See here.

There are also:

  • 3 comment(s) on Section 13.3: The definition of a triangulated category

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0144. Beware of the difference between the letter 'O' and the digit '0'.