Definition 13.3.2. A *triangulated category* consists of a triple $(\mathcal{D}, \{ [n]\} _{n\in \mathbf{Z}}, \mathcal{T})$ where

$\mathcal{D}$ is an additive category,

$[1] : \mathcal{D} \to \mathcal{D}$, $E \mapsto E[1]$ is an additive auto-equivalence and $[n]$ for $n \in \mathbf{Z}$ is as discussed above, and

$\mathcal{T}$ is a set of triangles (Definition 13.3.1) called the

*distinguished triangles*

subject to the following conditions

Any triangle isomorphic to a distinguished triangle is a distinguished triangle. Any triangle of the form $(X, X, 0, \text{id}, 0, 0)$ is distinguished. For any morphism $f : X \to Y$ of $\mathcal{D}$ there exists a distinguished triangle of the form $(X, Y, Z, f, g, h)$.

The triangle $(X, Y, Z, f, g, h)$ is distinguished if and only if the triangle $(Y, Z, X[1], g, h, -f[1])$ is.

Given a solid diagram

\[ \xymatrix{ X \ar[r]^ f \ar[d]^ a & Y \ar[r]^ g \ar[d]^ b & Z \ar[r]^ h \ar@{-->}[d] & X[1] \ar[d]^{a[1]} \\ X' \ar[r]^{f'} & Y' \ar[r]^{g'} & Z' \ar[r]^{h'} & X'[1] } \]whose rows are distinguished triangles and which satisfies $b \circ f = f' \circ a$, there exists a morphism $c : Z \to Z'$ such that $(a, b, c)$ is a morphism of triangles.

Given objects $X$, $Y$, $Z$ of $\mathcal{D}$, and morphisms $f : X \to Y$, $g : Y \to Z$, and distinguished triangles $(X, Y, Q_1, f, p_1, d_1)$, $(X, Z, Q_2, g \circ f, p_2, d_2)$, and $(Y, Z, Q_3, g, p_3, d_3)$, there exist morphisms $a : Q_1 \to Q_2$ and $b : Q_2 \to Q_3$ such that

$(Q_1, Q_2, Q_3, a, b, p_1[1] \circ d_3)$ is a distinguished triangle,

the triple $(\text{id}_ X, g, a)$ is a morphism of triangles $(X, Y, Q_1, f, p_1, d_1) \to (X, Z, Q_2, g \circ f, p_2, d_2)$, and

the triple $(f, \text{id}_ Z, b)$ is a morphism of triangles $(X, Z, Q_2, g \circ f, p_2, d_2) \to (Y, Z, Q_3, g, p_3, d_3)$.

We will call $(\mathcal{D}, [\ ], \mathcal{T})$ a *pre-triangulated category* if TR1, TR2 and TR3 hold.^{1}

## Comments (0)

There are also: