Lemma 13.9.13. Let \mathcal{A} be an additive category. Let f_1 : K_1^\bullet \to L_1^\bullet and f_2 : K_2^\bullet \to L_2^\bullet be morphisms of complexes. Let
(a, b, c) : (K_1^\bullet , L_1^\bullet , C(f_1)^\bullet , f_1, i_1, p_1) \longrightarrow (K_2^\bullet , L_2^\bullet , C(f_2)^\bullet , f_2, i_2, p_2)
be any morphism of triangles of K(\mathcal{A}). If a and b are homotopy equivalences then so is c.
Proof.
Let a^{-1} : K_2^\bullet \to K_1^\bullet be a morphism of complexes which is inverse to a in K(\mathcal{A}). Let b^{-1} : L_2^\bullet \to L_1^\bullet be a morphism of complexes which is inverse to b in K(\mathcal{A}). Let c' : C(f_2)^\bullet \to C(f_1)^\bullet be the morphism from Lemma 13.9.2 applied to f_1 \circ a^{-1} = b^{-1} \circ f_2. If we can show that c \circ c' and c' \circ c are isomorphisms in K(\mathcal{A}) then we win. Hence it suffices to prove the following: Given a morphism of triangles (1, 1, c) : (K^\bullet , L^\bullet , C(f)^\bullet , f, i, p) in K(\mathcal{A}) the morphism c is an isomorphism in K(\mathcal{A}). By assumption the two squares in the diagram
\xymatrix{ L^\bullet \ar[r] \ar[d]_1 & C(f)^\bullet \ar[r] \ar[d]_ c & K^\bullet [1] \ar[d]_1 \\ L^\bullet \ar[r] & C(f)^\bullet \ar[r] & K^\bullet [1] }
commute up to homotopy. By construction of C(f)^\bullet the rows form termwise split sequences of complexes. Thus we see that (c - 1)^2 = 0 in K(\mathcal{A}) by Lemma 13.9.12. Hence c is an isomorphism in K(\mathcal{A}) with inverse 2 - c.
\square
Comments (2)
Comment #1555 by jpg on
Comment #1573 by Johan on