Lemma 13.9.12. Let \mathcal{A} be an additive category. Let 0 \to A_ i^\bullet \to B_ i^\bullet \to C_ i^\bullet \to 0, i = 1, 2, 3 be termwise split exact sequences of complexes. Let b : B_1^\bullet \to B_2^\bullet and b' : B_2^\bullet \to B_3^\bullet be morphisms of complexes such that
\vcenter { \xymatrix{ A_1^\bullet \ar[d]_0 \ar[r] & B_1^\bullet \ar[r] \ar[d]_ b & C_1^\bullet \ar[d]_0 \\ A_2^\bullet \ar[r] & B_2^\bullet \ar[r] & C_2^\bullet } } \quad \text{and}\quad \vcenter { \xymatrix{ A_2^\bullet \ar[d]^0 \ar[r] & B_2^\bullet \ar[r] \ar[d]^{b'} & C_2^\bullet \ar[d]^0 \\ A_3^\bullet \ar[r] & B_3^\bullet \ar[r] & C_3^\bullet } }
commute in K(\mathcal{A}). Then b' \circ b = 0 in K(\mathcal{A}).
Proof.
By Lemma 13.9.5 we can replace b and b' by homotopic maps such that the right square of the left diagram commutes and the left square of the right diagram commutes. In other words, we have \mathop{\mathrm{Im}}(b^ n) \subset \mathop{\mathrm{Im}}(A_2^ n \to B_2^ n) and \mathop{\mathrm{Ker}}((b')^ n) \supset \mathop{\mathrm{Im}}(A_2^ n \to B_2^ n). Then b' \circ b = 0 as a map of complexes.
\square
Comments (2)
Comment #5875 by Guillermo Barajas Ayuso on
Comment #6086 by Johan on