Loading web-font TeX/Caligraphic/Regular

The Stacks project

Lemma 13.9.12. Let \mathcal{A} be an additive category. Let 0 \to A_ i^\bullet \to B_ i^\bullet \to C_ i^\bullet \to 0, i = 1, 2, 3 be termwise split exact sequences of complexes. Let b : B_1^\bullet \to B_2^\bullet and b' : B_2^\bullet \to B_3^\bullet be morphisms of complexes such that

\vcenter { \xymatrix{ A_1^\bullet \ar[d]_0 \ar[r] & B_1^\bullet \ar[r] \ar[d]_ b & C_1^\bullet \ar[d]_0 \\ A_2^\bullet \ar[r] & B_2^\bullet \ar[r] & C_2^\bullet } } \quad \text{and}\quad \vcenter { \xymatrix{ A_2^\bullet \ar[d]^0 \ar[r] & B_2^\bullet \ar[r] \ar[d]^{b'} & C_2^\bullet \ar[d]^0 \\ A_3^\bullet \ar[r] & B_3^\bullet \ar[r] & C_3^\bullet } }

commute in K(\mathcal{A}). Then b' \circ b = 0 in K(\mathcal{A}).

Proof. By Lemma 13.9.5 we can replace b and b' by homotopic maps such that the right square of the left diagram commutes and the left square of the right diagram commutes. In other words, we have \mathop{\mathrm{Im}}(b^ n) \subset \mathop{\mathrm{Im}}(A_2^ n \to B_2^ n) and \mathop{\mathrm{Ker}}((b')^ n) \supset \mathop{\mathrm{Im}}(A_2^ n \to B_2^ n). Then b' \circ b = 0 as a map of complexes. \square


Comments (2)

Comment #5875 by Guillermo Barajas Ayuso on

I think it should read in the last sentence of the proof.


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.