Lemma 13.10.6. Let $\mathcal{A}$, $\mathcal{B}$ be additive categories. Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor. The induced functors

$\begin{matrix} F : K(\mathcal{A}) \longrightarrow K(\mathcal{B}) \\ F : K^{+}(\mathcal{A}) \longrightarrow K^{+}(\mathcal{B}) \\ F : K^{-}(\mathcal{A}) \longrightarrow K^{-}(\mathcal{B}) \\ F : K^ b(\mathcal{A}) \longrightarrow K^ b(\mathcal{B}) \end{matrix}$

are exact functors of triangulated categories.

Proof. Suppose $A^\bullet \to B^\bullet \to C^\bullet$ is a termwise split sequence of complexes of $\mathcal{A}$ with splittings $(s^ n, \pi ^ n)$ and associated morphism $\delta : C^\bullet \to A^\bullet [1]$, see Definition 13.9.9. Then $F(A^\bullet ) \to F(B^\bullet ) \to F(C^\bullet )$ is a termwise split sequence of complexes with splittings $(F(s^ n), F(\pi ^ n))$ and associated morphism $F(\delta ) : F(C^\bullet ) \to F(A^\bullet )[1]$. Thus $F$ transforms distinguished triangles into distinguished triangles. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 014X. Beware of the difference between the letter 'O' and the digit '0'.