Definition 13.21.1. Let $\mathcal{A}$ be an abelian category. Let $K^\bullet$ be a bounded below complex. A Cartan-Eilenberg resolution of $K^\bullet$ is given by a double complex $I^{\bullet , \bullet }$ and a morphism of complexes $\epsilon : K^\bullet \to I^{\bullet , 0}$ with the following properties:

1. There exists a $i \ll 0$ such that $I^{p, q} = 0$ for all $p < i$ and all $q$.

2. We have $I^{p, q} = 0$ if $q < 0$.

3. The complex $I^{p, \bullet }$ is an injective resolution of $K^ p$.

4. The complex $\mathop{\mathrm{Ker}}(d_1^{p, \bullet })$ is an injective resolution of $\mathop{\mathrm{Ker}}(d_ K^ p)$.

5. The complex $\mathop{\mathrm{Im}}(d_1^{p, \bullet })$ is an injective resolution of $\mathop{\mathrm{Im}}(d_ K^ p)$.

6. The complex $H^ p_ I(I^{\bullet , \bullet })$ is an injective resolution of $H^ p(K^\bullet )$.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).