Lemma 13.21.2. Let $\mathcal{A}$ be an abelian category with enough injectives. Let $K^\bullet $ be a bounded below complex. There exists a Cartan-Eilenberg resolution of $K^\bullet $.
Proof. Suppose that $K^ p = 0$ for $p < n$. Decompose $K^\bullet $ into short exact sequences as follows: Set $Z^ p = \mathop{\mathrm{Ker}}(d^ p)$, $B^ p = \mathop{\mathrm{Im}}(d^{p - 1})$, $H^ p = Z^ p/B^ p$, and consider
Set $I^{p, q} = 0$ for $p < n$. Inductively we choose injective resolutions as follows:
Choose an injective resolution $Z^ n \to J_ Z^{n, \bullet }$.
Using Lemma 13.18.9 choose injective resolutions $K^ n \to I^{n, \bullet }$, $B^{n + 1} \to J_ B^{n + 1, \bullet }$, and an exact sequence of complexes $0 \to J_ Z^{n, \bullet } \to I^{n, \bullet } \to J_ B^{n + 1, \bullet } \to 0$ compatible with the short exact sequence $0 \to Z^ n \to K^ n \to B^{n + 1} \to 0$.
Using Lemma 13.18.9 choose injective resolutions $Z^{n + 1} \to J_ Z^{n + 1, \bullet }$, $H^{n + 1} \to J_ H^{n + 1, \bullet }$, and an exact sequence of complexes $0 \to J_ B^{n + 1, \bullet } \to J_ Z^{n + 1, \bullet } \to J_ H^{n + 1, \bullet } \to 0$ compatible with the short exact sequence $0 \to B^{n + 1} \to Z^{n + 1} \to H^{n + 1} \to 0$.
Etc.
Taking as maps $d_1^\bullet : I^{p, \bullet } \to I^{p + 1, \bullet }$ the compositions $I^{p, \bullet } \to J_ B^{p + 1, \bullet } \to J_ Z^{p + 1, \bullet } \to I^{p + 1, \bullet }$ everything is clear. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)