The Stacks project

Remark 13.26.15. As promised in Remark 13.21.4 we discuss the connection of the lemma above with the constructions using Cartan-Eilenberg resolutions. Namely, let $T : \mathcal{A} \to \mathcal{B}$ be a left exact functor of abelian categories, assume $\mathcal{A}$ has enough injectives, and let $K^\bullet $ be a bounded below complex of $\mathcal{A}$. We give an alternative construction of the spectral sequences ${}'E$ and ${}''E$ of Lemma 13.21.3.

First spectral sequence. Consider the “stupid” filtration on $K^\bullet $ obtained by setting $F^ p(K^\bullet ) = \sigma _{\geq p}(K^\bullet )$, see Homology, Section 12.15. Note that this stupid in the sense that $d(F^ p(K^\bullet )) \subset F^{p + 1}(K^\bullet )$, compare Homology, Lemma 12.24.3. Note that $\text{gr}^ p(K^\bullet ) = K^ p[-p]$ with this filtration. According to Lemma 13.26.14 there is a spectral sequence with $E_1$ term

\[ E_1^{p, q} = R^{p + q}T(K^ p[-p]) = R^ qT(K^ p) \]

as in the spectral sequence ${}'E_ r$. Observe moreover that the differentials $E_1^{p, q} \to E_1^{p + 1, q}$ agree with the differentials in $'{}E_1$, see Homology, Lemma 12.24.3 part (2) and the description of ${}'d_1$ in the proof of Lemma 13.21.3.

Second spectral sequence. Consider the filtration on the complex $K^\bullet $ obtained by setting $F^ p(K^\bullet ) = \tau _{\leq -p}(K^\bullet )$, see Homology, Section 12.15. The minus sign is necessary to get a decreasing filtration. Note that $\text{gr}^ p(K^\bullet )$ is quasi-isomorphic to $H^{-p}(K^\bullet )[p]$ with this filtration. According to Lemma 13.26.14 there is a spectral sequence with $E_1$ term

\[ E_1^{p, q} = R^{p + q}T(H^{-p}(K^\bullet )[p]) = R^{2p + q}T(H^{-p}(K^\bullet )) = {}''E_2^{i, j} \]

with $i = 2p + q$ and $j = -p$. (This looks unnatural, but note that we could just have well developed the whole theory of filtered complexes using increasing filtrations, with the end result that this then looks natural, but the other one doesn't.) We leave it to the reader to see that the differentials match up.

Actually, given a Cartan-Eilenberg resolution $K^\bullet \to I^{\bullet , \bullet }$ the induced morphism $K^\bullet \to \text{Tot}(I^{\bullet , \bullet })$ into the associated total complex will be a filtered injective resolution for either filtration using suitable filtrations on $\text{Tot}(I^{\bullet , \bullet })$. This can be used to match up the spectral sequences exactly.


Comments (2)

Comment #1479 by Dignxin Zhang on

In the second paragraph, shouldn't we have , rather than ? So the spectral sequence associated to the "filtration bête" has , rather than . I also doubt the 1st spectral sequence in the displayed equation in 015J contains a typo (despite the footnote...)

Comment #1483 by on

OK, I am currently upgrading some of the discussions of spectral sequences as currently the discussion of convergence is too vague. As part of this I may also have fixed your complaints above, see this commit. In any case many thanks!


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 015X. Beware of the difference between the letter 'O' and the digit '0'.