The Stacks project

Lemma 14.3.2. Let $\mathcal{C}$ be a category.

  1. Given a simplicial object $U$ in $\mathcal{C}$ we obtain a sequence of objects $U_ n = U([n])$ endowed with the morphisms $d^ n_ j = U(\delta ^ n_ j) : U_ n \to U_{n-1}$ and $s^ n_ j = U(\sigma ^ n_ j) : U_ n \to U_{n + 1}$. These morphisms satisfy the opposites of the relations displayed in Lemma 14.2.3, namely

    1. If $0 \leq i < j \leq n + 1$, then $d^ n_ i \circ d^{n + 1}_ j = d^ n_{j - 1} \circ d^{n + 1}_ i$.

    2. If $0 \leq i < j \leq n - 1$, then $d^ n_ i \circ s^{n - 1}_ j = s^{n - 2}_{j - 1} \circ d^{n - 1}_ i$.

    3. If $0 \leq j \leq n - 1$, then $\text{id} = d^ n_ j \circ s^{n - 1}_ j = d^ n_{j + 1} \circ s^{n - 1}_ j$.

    4. If $0 < j + 1 < i \leq n$, then $d^ n_ i \circ s^{n - 1}_ j = s^{n - 2}_ j \circ d^{n - 1}_{i - 1}$.

    5. If $0 \leq i \leq j \leq n - 1$, then $s^ n_ i \circ s^{n - 1}_ j = s^ n_{j + 1} \circ s^{n - 1}_ i$.

  2. Conversely, given a sequence of objects $U_ n$ and morphisms $d^ n_ j$, $s^ n_ j$ satisfying (1)(a) – (e) there exists a unique simplicial object $U$ in $\mathcal{C}$ such that $U_ n = U([n])$, $d^ n_ j = U(\delta ^ n_ j)$, and $s^ n_ j = U(\sigma ^ n_ j)$.

  3. A morphism between simplicial objects $U$ and $U'$ is given by a family of morphisms $U_ n \to U'_ n$ commuting with the morphisms $d^ n_ j$ and $s^ n_ j$.

Proof. This follows from Lemma 14.2.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 016B. Beware of the difference between the letter 'O' and the digit '0'.