Lemma 14.28.6. Let $\mathcal{A}$ be an additive category. Let $a, b : U \to V$ be morphisms of cosimplicial objects of $\mathcal{A}$. If $a$, $b$ are homotopic, then $s(a), s(b) : s(U) \to s(V)$ are homotopic maps of cochain complexes. If in addition $\mathcal{A}$ is abelian, then $Q(a), Q(b) : Q(U) \to Q(V)$ are homotopic maps of cochain complexes.
The (cosimplicial) Dold-Kan functor carries homotopic maps to homotopic maps.
Proof.
Let $(-)' : \mathcal{A} \to \mathcal{A}^{opp}$ be the contravariant functor $A \mapsto A$. By Lemma 14.28.5 the maps $a'$ and $b'$ are homotopic. By Lemma 14.27.1 we see that $s(a')$ and $s(b')$ are homotopic maps of chain complexes. Since $s(a') = (s(a))'$ and $s(b') = (s(b))'$ we conclude that also $s(a)$ and $s(b)$ are homotopic by applying the additive contravariant functor $(-)'' : \mathcal{A}^{opp} \to \mathcal{A}$. The result for the $Q$-complexes follows in the same manner using that $Q(U)' = N(U')$.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #852 by Bhargav Bhatt on