Lemma 14.28.7. Let $\mathcal{A}$ be an additive category. Let $a : U \to V$ be a morphism of cosimplicial objects of $\mathcal{A}$. If $a$ is a homotopy equivalence, then $s(a) : s(U) \to s(V)$ is a homotopy equivalence of chain complexes. If in addition $\mathcal{A}$ is abelian, then also $Q(a) : Q(U) \to Q(V)$ is a homotopy equivalence of chain complexes.
Proof. Omitted. See Lemma 14.28.6 above. $\square$
Comments (0)