Lemma 17.6.3. Let $i : Z \to X$ be the inclusion of a closed subset into the topological space $X$. Denote1 $i^! : \textit{Ab}(X) \to \textit{Ab}(Z)$ the functor $\mathcal{F} \mapsto i^{-1}\mathcal{H}_ Z(\mathcal{F})$. Then $i^!$ is a right adjoint to $i_*$, in a formula

$\mathop{Mor}\nolimits _{\textit{Ab}(X)}(i_*\mathcal{G}, \mathcal{F}) = \mathop{Mor}\nolimits _{\textit{Ab}(Z)}(\mathcal{G}, i^!\mathcal{F}).$

In particular $i_*$ commutes with arbitrary colimits.

Proof. Note that $i_*i^!\mathcal{F} = \mathcal{H}_ Z(\mathcal{F})$. Since $i_*$ is fully faithful we are reduced to showing that

$\mathop{Mor}\nolimits _{\textit{Ab}(X)}(i_*\mathcal{G}, \mathcal{F}) = \mathop{Mor}\nolimits _{\textit{Ab}(X)}(i_*\mathcal{G}, \mathcal{H}_ Z(\mathcal{F})).$

This follows since the support of the image via any homomorphism of a section of $i_*\mathcal{G}$ is contained in $Z$, see Lemma 17.5.2. $\square$

 This is likely nonstandard notation.

Comment #1854 by Keenan Kidwell on

The second sentence says "...the support...is supported on..." Probably change the second part into "is contained in" or something along those lines.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).