Proof.
Proof of (1). Let x \in X. Choose an open neighbourhood U \subset X of x such that there exists a presentation
\mathcal{O}_ U^{\oplus m} \xrightarrow {\chi } \mathcal{O}_ U^{\oplus n} \xrightarrow {\varphi } \mathcal{F}|_ U \to 0.
Let e_ k be the section generating the kth factor of \mathcal{O}_ X^{\oplus r}. For every k = 1, \ldots , r we can, after shrinking U to a small neighbourhood of x, lift \psi (e_ k) to a section \tilde e_ k of \mathcal{O}_ U^{\oplus n} over U. This gives a morphism of sheaves \alpha : \mathcal{O}_ U^{\oplus r} \to \mathcal{O}_ U^{\oplus n} such that \varphi \circ \alpha = \psi . Similarly, after shrinking U, we can find a morphism \beta : \mathcal{O}_ U^{\oplus n} \to \mathcal{O}_ U^{\oplus r} such that \psi \circ \beta = \varphi . Then the map
\mathcal{O}_ U^{\oplus m} \oplus \mathcal{O}_ U^{\oplus r} \xrightarrow {\beta \circ \chi , 1 - \beta \circ \alpha } \mathcal{O}_ U^{\oplus r}
is a surjection onto the kernel of \psi .
To prove (2) we may locally choose a surjection \eta : \mathcal{O}_ X^{\oplus r} \to \mathcal{G}. By part (1) we see \mathop{\mathrm{Ker}}(\theta \circ \eta ) is of finite type. Since \mathop{\mathrm{Ker}}(\theta ) = \eta (\mathop{\mathrm{Ker}}(\theta \circ \eta )) we win.
\square
Comments (2)
Comment #6198 by Masa on
Comment #6202 by Johan on