Processing math: 100%

The Stacks project

Lemma 17.11.3. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{F} be an \mathcal{O}_ X-module of finite presentation.

  1. If \psi : \mathcal{O}_ X^{\oplus r} \to \mathcal{F} is a surjection, then \mathop{\mathrm{Ker}}(\psi ) is of finite type.

  2. If \theta : \mathcal{G} \to \mathcal{F} is surjective with \mathcal{G} of finite type, then \mathop{\mathrm{Ker}}(\theta ) is of finite type.

Proof. Proof of (1). Let x \in X. Choose an open neighbourhood U \subset X of x such that there exists a presentation

\mathcal{O}_ U^{\oplus m} \xrightarrow {\chi } \mathcal{O}_ U^{\oplus n} \xrightarrow {\varphi } \mathcal{F}|_ U \to 0.

Let e_ k be the section generating the kth factor of \mathcal{O}_ X^{\oplus r}. For every k = 1, \ldots , r we can, after shrinking U to a small neighbourhood of x, lift \psi (e_ k) to a section \tilde e_ k of \mathcal{O}_ U^{\oplus n} over U. This gives a morphism of sheaves \alpha : \mathcal{O}_ U^{\oplus r} \to \mathcal{O}_ U^{\oplus n} such that \varphi \circ \alpha = \psi . Similarly, after shrinking U, we can find a morphism \beta : \mathcal{O}_ U^{\oplus n} \to \mathcal{O}_ U^{\oplus r} such that \psi \circ \beta = \varphi . Then the map

\mathcal{O}_ U^{\oplus m} \oplus \mathcal{O}_ U^{\oplus r} \xrightarrow {\beta \circ \chi , 1 - \beta \circ \alpha } \mathcal{O}_ U^{\oplus r}

is a surjection onto the kernel of \psi .

To prove (2) we may locally choose a surjection \eta : \mathcal{O}_ X^{\oplus r} \to \mathcal{G}. By part (1) we see \mathop{\mathrm{Ker}}(\theta \circ \eta ) is of finite type. Since \mathop{\mathrm{Ker}}(\theta ) = \eta (\mathop{\mathrm{Ker}}(\theta \circ \eta )) we win. \square


Comments (2)

Comment #6198 by Masa on

In the second sentence of Lemma 17.11.3, "a -module" should be "an -module".


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.