Lemma 17.22.8. Let $X$ be a ringed space. Let $I$ be a preordered set and let $(\mathcal{F}_ i, \varphi _{ii'})$ be a system over $I$ consisting of sheaves of $\mathcal{O}_ X$-modules (see Categories, Section 4.21). Assume
$I$ is directed,
$\mathcal{G}$ is an $\mathcal{O}_ X$-module of finite presentation, and
$X$ has a cofinal system of open coverings $\mathcal{U} : X = \bigcup _{j\in J} U_ j$ with $J$ finite and $U_ j \cap U_{j'}$ quasi-compact for all $j, j' \in J$.
Then we have
\[ \mathop{\mathrm{colim}}\nolimits _ i \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, \mathcal{F}_ i) = \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i). \]
Proof.
Set $\mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i)$ and $\mathcal{H}_ i = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{F}_ i)$. Recall that
\[ \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, \mathcal{F}) = \Gamma (X, \mathcal{H}) \quad \text{and}\quad \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{G}, \mathcal{F}_ i) = \Gamma (X, \mathcal{H}_ i) \]
by construction. By Lemma 17.22.7 we have $\mathcal{H} = \mathop{\mathrm{colim}}\nolimits \mathcal{H}_ i$. Thus the lemma follows from Sheaves, Lemma 6.29.1.
$\square$
Comments (2)
Comment #4323 by Minh-Tien Tran on
Comment #4479 by Johan on
There are also: