## Tag `01BZ`

Chapter 17: Sheaves of Modules > Section 17.12: Coherent modules

Lemma 17.12.5. Let $(X, \mathcal{O}_X)$ be a ringed space. Let $\mathcal{F}$ be an $\mathcal{O}_X$-module. Assume $\mathcal{O}_X$ is a coherent $\mathcal{O}_X$-module. Then $\mathcal{F}$ is coherent if and only if it is of finite presentation.

Proof.Omitted. $\square$

The code snippet corresponding to this tag is a part of the file `modules.tex` and is located in lines 1823–1830 (see updates for more information).

```
\begin{lemma}
\label{lemma-coherent-structure-sheaf}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module.
Assume $\mathcal{O}_X$ is a coherent $\mathcal{O}_X$-module.
Then $\mathcal{F}$ is coherent if and only if it is
of finite presentation.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
```

## Comments (0)

## Add a comment on tag `01BZ`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.