Lemma 19.8.2. For any $\mathcal{O}$-module $\mathcal{F}$ the evaluation map $ev : \mathcal{F} \to (\mathcal{F}^\vee )^\vee $ is injective.
Proof. You can check this using the definition of $\mathcal{J}$. Namely, if $s \in \mathcal{F}(U)$ is not zero, then let $j_{U!}\mathcal{O}_ U \to \mathcal{F}$ be the map of $\mathcal{O}$-modules it corresponds to via adjunction. Let $\mathcal{I}$ be the kernel of this map. There exists a nonzero map $\mathcal{F} \supset j_{U!}\mathcal{O}_ U/\mathcal{I} \to \mathcal{J}$ which does not annihilate $s$. As $\mathcal{J}$ is an injective $\mathcal{O}$-module, this extends to a map $\varphi : \mathcal{F} \to \mathcal{J}$. Then $ev(s)(\varphi ) = \varphi (s) \not= 0$ which is what we had to prove. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)